PMN-PT/PVDF Nanocomposite for High Output Nanogenerator Applications
نویسندگان
چکیده
The 0.7Pb(Mg1/3Nb2/3)O₃-0.3PbTiO₃(0.7PMN-0.3PT) nanorods were obtained via hydrothermal method with high yield (over 78%). Then, new piezoelectric nanocomposites based on (1-x)Pb(Mg1/3Nb2/3)O₃-xPbTiO₃ (PMN-PT) nanorods were fabricated by dispersing the 0.7PMN-0.3PT nanorods into piezoelectric poly(vinylidene fluoride) (PVDF) polymer. The mechanical behaviors of the nanocomposites were investigated. The voltage and current generation of PMN-PT/PVDF nanocomposites were also measured. The results showed that the tensile strength, yield strength, and Young's modulus of nanocomposites were enhanced as compared to that of the pure PVDF. The largest Young's modulus of 1.71 GPa was found in the samples with 20 wt % nanorod content. The maximum output voltage of 10.3 V and output current of 46 nA were obtained in the samples with 20 wt % nanorod content, which was able to provide a 13-fold larger output voltage and a 4.5-fold larger output current than that of pure PVDF piezoelectric polymer. The current density of PMN-PT/PVDF nanocomposites is 20 nA/cm². The PMN-PT/PVDF nanocomposites exhibited great potential for flexible self-powered sensing applications.
منابع مشابه
Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device.
Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piez...
متن کاملLead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation
In a flexible nanocomposite-based nanogenerator, in which piezoelectric nanostructures are mixed with polymers, important parameters to increase the output power include using long nanowires with high piezoelectricity and decreasing the dielectric constant of the nanocomposite. Here, we report on piezoelectric power generation from a lead-free LiNbO3 nanowire-based nanocomposite. Through ion ex...
متن کاملA high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory.
We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as ...
متن کاملRobust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement
A robust nanogenerator based on poly(tert-butyl acrylate) (PtBA)-grafted polyvinylidene difluoride (PVDF) copolymers via dielectric constant control through an atom-transfer radical polymerization technique, which can markedly increase the output power, is demonstrated. The copolymer is mainly composed of α phases with enhanced dipole moments due to the π-bonding and polar characteristics of th...
متن کاملEffective energy harvesting from a single electrode based triboelectric nanogenerator
The arch-shaped single electrode based triboelectric nanogenerator (TENG) is fabricated using thin film of reduced graphene oxide nanoribbons (rGONRs) with polyvinylidene fluoride (PVDF) polymer used as binder to effectively convert mechanical energy into electrical energy. The incorporation of rGONRs in PVDF polymer enhances average surface roughness of rGONRs/PVDF thin film. With the combinat...
متن کامل